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The Random Forests multiple-regression tree was used to model climate profiles of 25 biotic communities of
the western United States and nine of their constituent species. Analyses of the communities were based on a
gridded sample of ca. 140,000 points, while those for the species used presence-absence data from ca. 120,000
locations. Independent variables included 35 simple expressions of temperature and precipitation and their
interactions. Classification errors for community models averaged 19%, but the errors were reduced by half
when adjusted for misalignment between geographic data sets. Errors of omission for species-specific models
approached 0, while errors of commission were less than 9%. Mapped climate profiles of the species were in
solid agreement with range maps. Climate variables of most importance for segregating the communities were
those that generally differentiate maritime, continental, and monsoonal climates, while those of importance for
predicting the occurrence of species varied among species but consistently implicated the periodicity of
precipitation and temperature-precipitation interactions. Projections showed that unmitigated global warming
should increase the abundance primarily of the montane forest and grassland community profiles at the
expense largely of those of the subalpine, alpine, and tundra communities but also that of the arid woodlands.
However, the climate of 47% of the future landscape may be extramural to contemporary community profiles.
Effects projected on the spatial distribution of species-specific profiles were varied, but shifts in space and
altitude would be extensive. Species-specific projections were not necessarily consistent with those of their
communities.
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Introduction

Analyses of plant-climate relationships have proliferated as
warming of the global climate has become indisputable (e.g.,
Thomas et al. 2001; Walther et al. 2002; Parmesan and Yohe
2003; Root et al. 2003). While recent studies tend to be cen-
tered on the effects of global warming, vegetation-climate
relationships have been used to address a diverse range of
topics that include deciphering paleoecologic records (e.g.,
Monserud et al. 1998), predicting extinction rates in natural
populations (e.g., Thomas et al. 2004), describing intra-
specific genetic responses (Rehfeldt et al. 1999, 2002), and
estimating the effect of climate variability on forest produc-
tivity (Loustau et al. 2005). Although considerable debate has
taken place on the relative merits of mechanistic (e.g., Cum-
ming and Burton 1996; Chuine and Beaubien 2001; Chuine
et al. 2004) and niche-related (e.g., Iverson and Prasad 1998;
Bakkenes et al. 2002) modeling, most analyses are correlative,
largely because the complex of interacting factors governing
physiological responses to climate is only beginning to be un-
derstood (Pearson and Dawson 2003). We use correlative mod-
els in an empirical evaluation of plant-climate relationships.

Correlative approaches to bioclimatic modeling first em-
ployed the climatic envelope of Box et al. (1993, 1999), a
Hutchinsonian hypervolume. With dimensions determined by
climatic limits of distribution, the envelope encompasses the
realized climate niche. Although it is used to outline the dis-
tribution of biomes (Prentice et al. 1992; Monserud et al.
1993), communities (Berry et al. 2002), species (Pearson and
Dawson 2003), or populations (Tchebakova et al. 2005), the
envelope generally overestimates the realized niche (Rehfeldt
2004), largely because distributions are controlled by inter-
actions of variables that may not be intuitively obvious
(Stephenson 1998). Overestimating the realized niche creates
bias in the model that often is assumed to reflect potential
niche space rather than modeling errors. Perhaps the greatest
weakness of the envelope approach, therefore, is that the sta-
tistical fit of the models is difficult to judge. Like Iverson and
Prasad (1998), Bakkenes et al. (2002), and Thuiller et al.
(2003), we circumvent many of the problems associated with
the climate envelope by using regression models to predict oc-
currence from presence-absence data.
Statistical approaches to modeling vegetation have been

discussed elsewhere (e.g., Guisan and Zimmermann 2000;
Moisen and Frescino 2002; Thuiller 2003; Thuiller et al. 2003).
Although no consensus is available, a recurring concern in-
volves the multicolinearity (Beaumont et al. 2005) of predic-
tor variables, which leads toward overparameterization,
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overfitting, and, ultimately, predictions of a precision lower
than that suggested by the regression statistics (Graham
2003). To avoid overfitting, correlative modelers ordinarily
reduce the array of potential predictors by incorporating in-
dependent variables of purported physiological relevance,
labeled ‘‘biophysical variables.’’ The list includes water bal-
ance (Stephenson 1990, 1998; Berry et al. 2002); annual run-
off, actual and potential evapotranspiration, and moisture
indices (Bakkenes et al. 2002); soil temperatures (McKenzie
et al. 2003); humidity index (Thuiller 2003); and radiation
(Beaumont et al. 2005). By using a multivariate regression
tree, Random Forests (Breiman 2001), that is immune to over-
fitting, we avoid issues concerning physiological relevance and
instead concentrate on summer and winter temperatures, mea-
sures of available moisture, length of the frost-free season,
and the interactions of temperature and precipitation, the vari-
ables long regarded as the primary factors controlling plant
distributions (Holdridge 1947).
Spatial resolution of bioclimatic models is often a compro-

mise between specificity and breadth but ultimately is depen-
dent on the resolution of the environmental data (Thuiller
et al. 2003). While coarse grids may suffice for global model-
ing, grids of 25 km (Shafer et al. 2001; Thompson et al.
2002) or 50 km (Bakkenes et al. 2002; Berry et al. 2002;
Thuiller 2003) or county subdivisions (Iverson and Prasad
1998) are far too coarse for an ecological assessment in the
mountainous West of the United States. Likewise, the grid of
180 m used by Thuiller et al. (2003) for a province of Spain
is too fine for large regions. We employ a climate model that
provides point estimates and a map on a grid of 1 km, a reso-
lution useful for land management.
Our goals are (1) to develop bioclimatic models that pre-

dict the occurrence of plant communities and some of their

constituent species and (2) to project contemporary climate
profiles into future climate space. We combine an immense
volume of presence-absence data, powerful statistical models,
and a relatively fine spatial scale to assess relationships across
a broad and physiographically diverse region. The work of
Iverson and Prasad (1998) is used as a foundation, but our
assessment of plant-climate relationships is of a scope and
thoroughness not yet attempted. By considering plant com-
munities and some of their constituent species, we initiate a
comparison of holistic and individualistic predictions. Our
approach improves on that of others working in the same
geographic region (Shafer et al. 2001; Thompson et al. 2002),
who relied on range maps to delimit four-variate climate en-
velopes on 25-km grids and presented results not subject to
statistical evaluation.

Methods

The analyses are limited to the western United States and
southwestern Canada (fig. 1), lat. 31�–51�N, long. 102�–125�W,
the region supported by the climate surfaces of Rehfeldt (2006).

Climate Estimates

The climate model of Rehfeldt (2006) uses the thin plate
splines of Hutchinson (1991, 2000) to produce climate sur-
faces from normalized (1961–1990) monthly values of total
precipitation and average, maximum, and minimum temper-
ature from ca. 3000 geographically disparate weather sta-
tions. Hutchinson’s software can be used to predict (a) the

Fig. 1 Relief map for region of study naming geographic locations

referenced in the text.

Table 1

Climate Variables Used as Independent Variables
in Regression Analyses

Acronym Definition

MAT Mean annual temperature

MTCM Mean temperature in the coldest month

MMIN Minimum temperature in the coldest month

MTWM Mean temperature in the warmest month
MMAX Maximum temperature in the warmest month

MAP Mean annual precipitation

GSP Growing season precipitation, April–September

TDIFF Summer-winter temperature differential,
MTWM � MTCM

DD5 Degree-days >5�C
DD0 Degree-days <0�C
MINDD0 Minimum degree-days <0�C
SDAY Julian date of the last freezing date of spring

FDAY Julian date of the first freezing date of autumn

FFP Length of the frost-free period
GSDD5 Degree-days >5�C accumulating within the

frost-free period

D100 Julian date the sum of degree-days >5�C reaches 100

AMI Annual moisture index, DD5/MAP
SMI Summer moisture index, GSDD5/GSP

PRATIO Ratio of summer precipitation to total precipitation,

GSP/MAP

Note. Interactions used in the analyses are MAP 3 DD5, MAP 3

MTCM, GSP 3 MTCM, GSP 3 DD5, DD5 3 MTCM, MAP 3 TDIFF,

GSP 3 TDIFF, MTCM=MAP,MTCM=GSP, DD5=GSP, AMI 3 MTCM,
SMI 3 MTCM, TDIFF=MAP, TDIFF=GSP, PRATIO 3 MTCM, and

PRATIO 3 DD5.
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climate at point locations, identified by latitude, longitude,
and elevation, and therefore (b) the climate along gridded sur-
faces. Our analyses employ 35 variables, many of which are
simple interactions of temperature and precipitation (table 1).
To update the climate surfaces for the effects of global

warming, monthly output for the IS92a scenario (1%/yr in-
crease in greenhouse gases after 1990) of the International
Panel on Climate Change (IPCC 2001) was summarized
from general circulation models (GCMs) produced by the
Hadley Centre (HadCM3GGa1; Gordon et al. 2000) and
the Canadian Centre for Climate Modeling and Analysis
(CGCM2_ghga; Flato and Boer 2001) for the region of study.
The GCM output was used to calculate the monthly change
in climate between the normalization period and the decades
beginning in 2030, 2060, and 2090 for each weather station
used in developing the climate surfaces. Downscaling from
the relatively coarse grids of the GCMs to the point loca-
tions of the weather stations was accomplished by using a
weighted average of the monthly change in climate calculated
for the GCM cell centers lying within 500 km of a station.
The inverse of the distance from the station to the cell center
was used for weighting. Because the two GCMs use different
grid sizes, weighted means were calculated from the output
of each GCM and were averaged to estimate the change in
climate of each weather station. The splines were then refit-
ted to calculate anew the variables of table 1.

Vegetation Data

Plant associations. Brown et al. (1998) have produced a

hierarchical classification of the vegetation of North America

that uses climate as a primary consideration. The western

United States includes, for instance, at the second level of the

hierarchy, four formations (tundra, forests and woodlands,

scrublands, and deserts) that segregate along gradients of mois-

ture stress, and at the third level, four climatic subdivisions

(Arctic-alpine, boreal, cold temperate, and warm temperate).

Biotic communities appear at the fourth level as the recurring

associations recognized by indicator species. Twenty-five ter-

restrial biotic communities occur within our geographic win-

dow (table 2). A digitized outline of the spatial distribution

of the communities was conveniently provided to us.
To prepare a data set for statistical analyses, a series of

points was located systematically across the geographic win-

dow at intervals of 0.05� in latitude and longitude (a grid of

ca. 6 km), producing a data set with ca. 164,000 terrestrial

points. The sampling interval of 0.05� was a compromise be-

tween finer grids that would have been computationally im-

practical and coarser grids that would have increased the risk

of not sampling small polygons. Altitudes were estimated for

each point from the digital elevation model of GLOBE

(GLOBE Task Team 1999), climate variables (table 1) were

generated for each point from the climate surfaces, and the

Table 2

Biotic Communities of Brown et al. (1998), Their Numeric Codes, the Total Number of Data Points and the Number Used for Analysis,
and the Actual and Adjusted Proportions of Observations Misclassified by the Random Forests Multiple-Regression Tree

Data points Proportion misclassified

Biotic community Code Total Samplea Actualb Adjustedc

Sitka coastal conifer forest 2 247 247 0.29 0.22

Rocky Mountain subalpine conifer forest 3 7824 5133 0.33 0.14

Rocky Mountain and Great Basin alpine tundra 4 724 724 0.73 0.45
Plains grassland 5 41,588 10,369 0.05 0.02

Rocky Mountain montane conifer forest 6 19,066 7655 0.28 0.11

Cascade-Sierran montane conifer forest 7 6657 4339 0.20 0.11

Oregonian coastal conifer forest 8 5445 4375 0.07 0.06
Cascade-Sierran subalpine conifer forest 9 2432 2431 0.22 0.16

Great Basin shrub-grassland 10 23,318 8195 0.17 0.05

Cascade-Sierran alpine tundra 11 194 194 0.79 0.55
Oregonian deciduous and evergreen forests 12 1530 1530 0.23 0.16

Great Basin conifer woodland 13 12,155 6048 0.35 0.17

Great Basin desertscrub 14 13,871 6889 0.19 0.08

Great Basin montane scrub 15 1195 1195 0.42 0.29
California evergreen forest and woodland 16 2480 2480 0.17 0.10

California chaparral 17 1221 1221 0.32 0.22

California valley grassland 18 2788 2788 0.08 0.12

Mojave desertscrub 19 4915 3442 0.07 0.05
Semidesert grassland 20 4964 3428 0.20 0.05

Southwestern (Arizona) interior chaparral 21 409 409 0.43 0.40

Sonoran desertscrub 22 6013 4183 0.05 0.02
California coastal scrub 23 794 794 0.06 0.08

Chihuahuan desertscrub 24 2795 2795 0.11 0.03

Madrean evergreen forest and woodland 25 461 461 0.53 0.18

Madrean montane conifer forest 26 114 114 0.33 . . .

a Total observations in sample ¼ 81;439 (ca. 50% of total data points).
b Overall classification error ¼ 19%.
c Classification error after adjusting for misaligned geographic data ¼ 9:4%.
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biotic community expected at each grid point was obtained
by interfacing the grid with the digitized communities.
Because the grid was systematic, the number of data points

obtained for each community was proportional to the size of
the community (table 2). One rare community, the Madrean
conifer forest (no. 26), in fact, was represented initially by
only six data points. To provide a suitable number of obser-
vations for analyses, these six were augmented by 108 point
locations where G. E. Rehfeldt had obtained samples for re-
search on the Madrean pines (Rehfeldt 1999). Data points
for all other communities were obtained solely from the sys-
tematic grid.
Species. The analyses dealt with nine species chosen for

their spatially disparate distributions and for their represen-
tation across a broad spectrum of the biotic communities
(table 3): Pseudotsuga menziesii, Pinus ponderosa, Larix
occidentalis, Juniperus osteosperma, Pinus edulis, Quercus
gambelii, Picea engelmannii, Pinus leiophylla, and Carnegiea
gigantea. All are woody plants except C. gigantea, the giant
saguaro. The woody plants are common conifers of western
forests except for P. leiophylla, which reaches its northern
limit of a broad geographical distribution in the mountain
islands of the desert Southwest. As our work progressed, it
became obvious that one of these species, J. osteosperma, had
been confused with its congeneric cohorts, Juniperus scopulo-
rum and Juniperus monosperma. Analyses of J. osteosperma
nonetheless are presented to illustrate the sensitivity of the
approach to data errors.
The primary source of data for all species except C. gigantea

was Forest Inventory and Analysis, USDA Forest Service. This
organization maintains permanent plots that systematically
sample woody vegetation on forested and nonforested lands
(Alerich et al. 2004; Bechtold and Patterson 2005). Ca.
117,000 of these plots occur within our geographic window.
We used presence-absence data from the initial plot installa-
tion that corresponded most closely with the period of the
climate normals. Although the geographic location of these

plots is proprietary, we were allowed to generate estimates of
climate variables directly from the inventory databases. Our
analyses, therefore, were performed without knowledge of the
geographic location of the plots. Forest Inventory, however,
makes available a geographic position of their plots for which
latitude and longitude have been compromised somewhat.
None of the compromised data were used for our analyses,
but several are used in an illustration of the climate profile of
J. occidentalis. Inventory data from Canada are also proprie-
tary and were not available for our analyses.
For three species (P. menziesii, P. ponderosa, and

L. occidentalis), inventory data were supplemented with indi-
vidual tree locations held in the archives of tree improvement
or research organizations (see ‘‘Acknowledgments’’). With the
one exception noted above, data points plotted in the figures
are from these supplements. Data provided by the British
Columbia Ministry of Forests for L. occidentalis were the
only records that were available for Canada; all other results
pertaining to Canada are extrapolations. The locations of
sites inhabited by C. gigantea were obtained from the Sonoran
plant atlas (Turner et al. 1995) supplemented with a survey
conducted by us.

Statistical Procedures

Exploratory analyses were made to compare several dif-
ferent algorithms. Although not presented, the comparisons
included canonical discriminant functions, climate envelope
correlations, and the logistic form of a generalized linear
function. The technique yielding the lowest errors and best
verification was Random Forests (Breiman 2001), a multivariate
regression tree. Tree-based methods are data-partitioning al-
gorithms that recursively split observations into groups to
produce a tree with branches and nodes (Hastie et al. 2001).
According to Breiman, Random Forests is a combination of
trees with each tree dependent on the values of a random
vector of predictors sampled independently and with the
same distribution for all trees within the forest. Because the
generalization error converges to a limit as the number of
trees in the forest becomes large, colinearity and overfitting
are not issues.
Of the versions of Random Forests that are available, we

used R (R Development Core Team 2004), which is based on
the original programming of Leo Breiman and Adele Cutler
(Liaw and Wiener 2002). The algorithm builds a set of inde-
pendent regression trees from an input data set. The trees in
their aggregate are called a forest. The process begins with
the drawing of a bootstrap sample consisting of ca. 64% of
the total number of observations. This sample is used to build
a tree, while the omitted observations, collectively termed the
out-of-bag sample, are used to compute classification errors.
At each node of a tree, a random sample of the predictor var-
iables is selected, ordinarily equaling the square root of the
number of predictors. Of these, the variable that minimizes
the classification error is selected. Nodes are further split un-
til no more improvement can be achieved. Predictions are
made by running an observation down all trees in all forests.
A ‘‘vote’’ concerning the classification of that observation is
then available from each tree. Votes from all trees in all for-
ests are collected and can be presented as (a) a proportion of
the favorable votes to the total or (b) the plurality.

Table 3

Allocation of Nine Species to Biotic Communities, Number
of Field Plots in Which Each Species Was Present, the
Number Contained within the 35-Variable Climatic
Envelope, and the Number within the Envelope

Expanded by 60.5 SD in All Dimensions

Number of plots

Species

Biotic

communitya Present Envelope

Expanded

envelope

Pseudotsuga menziesii 6, 7, 8 20,171 96,087 103,142

Pinus ponderosa 6, 7 15,147 97,993 106,290

Picea engelmannii 3 5730 69,230 79,812
Juniperus osteosperma 13 4643 67,780 78,317

Pinus edulis 13 4544 52,194 62,648

Larix occidentalis 6, 7 4541 37,869 49,685
Quercus gambelii 6, 15 1942 37,600 53,127

Carnegiea gigantea 22 379 457 1541b

Pinus leiophylla 25, 26 82 1141 2245c

a D. E. Brown, Botany Department, Arizona State University, Tempe,

personal communication. Codes are defined in table 2.
b Expanded by 610 SD in all dimensions.
c Expanded by 61.5 SD in all dimensions.
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Breiman (2001) cautions that the Random Forests output
tends to be mechanistically indecipherable. To date, no tech-
niques exist for quantifying threshold values of those var-
iables acting to separate classes. Instead, the algorithm
available in R produces two measures for evaluating the im-
portance of independent variables, the mean decrease in ac-
curacy and the mean decrease in the Gini index of class
purity. Both rely on an iterative process of randomly permut-
ing (noising up) a predictor in the out-of-bag sample. The
sample is then run down the appropriate tree. Importance is
measured by the increase in error attributable to permuting.
The process is repeated for all variables, trees, and forests.
For the cases we considered, the two indices were so strongly
related that the most important group of variables from one
index ordinarily would include those from the other. Although
correlative models are not a desirable means of assessing mech-
anistic interactions, these indices, as described in the R docu-
mentation, are useful in assorting a large number of predictor
variables or culling superfluous variables (Breiman 2001).

Community profiles. Preliminary analyses showed, first,
that out-of-bag errors were lowest when the number of ob-
servations within classes was reasonably balanced and, sec-
ond, that our computing systems would operate on only
80,000 data points, approximately one-half of the total avail-
able. To meet these criteria, we designed a sample consisting
of (a) 100% of the data points for the 14 smallest communi-
ties and (b) 25%–80% of the available points for the largest
communities, with the proportional representation negatively
related to the size of the community (table 2). The culling of
ca. 50% of the observations addressed the limit of 80,000
and occurred at the expense of the largest communities.
When compared to several other sampling schemes, this pro-
cedure was the best at reducing classification errors for the
smallest communities while having little effect on classifica-
tion errors for the largest. The mean decreases in accuracy
and the Gini index were used jointly to cull superfluous pre-
dictors. The final analyses used 12 predictors to build one
forest with 100 trees.

Fig. 2 Distribution of 25 biotic communities (black outlines) of Brown et al. (1998) superimposed on the distribution of communities (color)
predicted from the Random Forests regression tree.
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Species-specific climatic profiles. Preliminary analyses showed
that (a) out-of-bag errors increased when the number of ob-
servations for which presence ¼ yes was <40% of the total
and (b) weighting the observations of presence ¼ yes would
drive errors of omission (presence ¼ yes but prediction ¼ no)
toward 0 while reducing errors of commission (presence ¼
no but prediction ¼ yes) by 25%–50%. Our sampling proto-
col, therefore, was to (a) use 100% of the observations for
which presence ¼ yes, weighted by a factor of 2 or 3, and
fix their proportion in the sample at 40%; (b) define an ex-
panded climate envelope as a 35-variable hypervolume, the
dimensions of which corresponded to the climatic limits of
distribution of the species expanded by 60.5 SD; (c) select
50% of the sample from the observations of presence ¼
no within the expanded envelope; and (d) select 10% of
the sample from the observations outside the expanded enve-
lope. This procedure thus used all available observations
of presence ¼ yes and concentrated the remainder of the
sample in those climates for which separating presence from
absence would be the most difficult. Weighting permitted a
higher proportion of the total observations to be used for
each forest.

This sampling protocol was followed without alteration
for the seven widespread species for which the number of ob-
servations was abundant (table 3). For the most widespread
species, P. menziesii, P. ponderosa, and P. engelmannii, a
weight of 2 was used, but for L. occidentalis, P. edulis,
J. osteosperma, and Q. gambelii, the weight was 3. Analyses
consisted of five forests of 100 trees, using an independent
sample for each forest.
To develop robust models for P. leiophylla and C. gigantea

from few observations (table 3), we employed two-stage re-
gression models. For the first stage, the Random Forests algo-
rithm was used on a data set consisting of 40% observations
of presence ¼ yes and 60% observations of presence ¼ no.
The former group consisted of all available observations
weighted by a factor of 3. The latter group consisted of a
sample of observations from a 35-variable envelope ex-
panded sufficiently to provide a pool of observations from
which the sample drawn would represent ca. 10% of the
total. To provide this pool, the envelope was expanded
by 61.5 SD for P. leiophylla and 610 SD for C. gigantea.
The second stage of the regression model consisted of the
rule that the species would not occur outside the expanded
envelope defined by those variables being used as predictors
in the first stage. Analyses for both species consisted of 10 for-
ests of 100 trees, using an independent sample of observa-
tions for each forest.
Because Forest Inventory did not record the vegetation at

nonforested locations, ca. 3500 data points lying within the
actual climate envelope of C. gigantea were excluded from
the analysis. The species was assumed to be absent in the re-
mainder of the Forest Inventory plots.
A visual assessment of the fit of the models was made by

comparing predicted distributions of the climate profiles with
the range maps of Little (1971, 1976) that are available as
digitized files (USGS 2005). Regressions initially used a full
complement of the 35 predictors. The indices of variable im-
portance were then used to reduce the size of the data frame
by ca. 50%. To further assure that the variables selected at
random for each node would be of consequence, the mean
decrease in accuracy was used in an iterative process that se-
quentially culled predictors to find a parsimonious model.
The best model was identified when classification errors be-
gan increasing, usually with eight to 12 predictors. The most
parsimonious model was used for the bioclimatic models, but
for judging the relative importance of predictors, the itera-
tions were continued until only three variables remained.

Mapping Predictions

Nearly 5.9 million pixels of 1-km resolution constitute the
terrestrial portion of our geographic window. With the use of
the digitized elevations of GLOBE (GLOBE Task Team
1999), the climate of each pixel could be estimated from the
surfaces of Rehfeldt (2006). These estimates were then run
down regression trees to predict vegetation.
For mapping biotic communities, the vegetation of a pixel

was declared to be that of the community given the plurality
of the 100 votes. Errors of estimate were calculated for all
predictions that did not conform to digitized community
boundaries. In summarizing these errors, we noticed that mis-
classification was related to poor alignment between the

Fig. 3 Six panels from fig. 2 illustrating the fit of the model.
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digitized community boundaries and the digital elevations on
which climate estimates were based. Misclassification, there-
fore, was highest for those communities that tend to occur in
small patches or irregular shapes. An adjustment to the clas-
sification error was made using a linear regression of classifi-
cation error on the ratio of polygon perimeter to area, an
index of the shape of the polygon.
In using the plurality of votes to map contemporary com-

munity profiles in future climatic space, each pixel was as-
sorted into one of the 25 communities. This approach,
however, could not provide for the contingency that future
climates may be novel, having no analog among the contem-
porary communities. To consider this contingency, we exam-
ined the possibility that the projected climate of a pixel may
be extramural to that of the community receiving the plural-
ity of votes. To classify extramural climates, the climate enve-
lope was used for truncation: if, for any single variable, the
projected climate was outside the 35-variable envelope of
the community receiving the voting plurality, the climate of
the pixel was classified as extramural.
Bioclimatic profiles of the nine species were mapped using

the votes cast in favor of a pixel being within the climate pro-
file of a species. To illustrate the performance of the model
along with the uncertainty in its predictions, votes were
grouped into five classes, each consisting of 20% of the total.
To predict occurrence, the climate of a pixel was declared
suitable for a species when receiving a majority (>50%) of
favorable votes.

Results

Fitting Climate Variables to the Occurrence
of Biotic Communities

Maps (figs. 2, 3) comparing the predicted occurrence of
communities with their digitized outline indicate that the fit

of the model was excellent. Yet classification errors averaged
19% (table 2). The errors, however, were dependent on the
size of the polygons within which the communities occur.
Errors were the largest for the small communities, averaging
ca. 75% for the two tundra communities, 53% for the
Madrean evergreen forest, and 45% for the Great Basin

Fig. 4 Digitizedoutlinesofbiotic communitiesofBrownetal. (1998) superimposedon thedigitized elevationsofGLOBE (GLOBETaskTeam1999).

Left, Mount Charleston, near Las Vegas, Nevada. Right, Columbia River Gorge and three volcanoes of the Cascade Range east of Portland, Oregon.

Fig. 5 Scatter of data points and linear regression of classification
error on polygon shape, the ratio of the perimeter to the area of the

average polygon. Numbers locate data points for selected biotic com-

munities (see table 2). Community 26was excluded from the regression.
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montane scrub and the Southwestern interior chaparral, all
of which occupy less than 0.1% of the geographic area. For
large (e.g., Great Plains) or compact (e.g., Sonoran desert-
scrub) communities, errors of classification were 5% (table 2).
This relationship between classification errors and the size

of the community becomes obvious in figure 3. In the panels
that include Rapid City and Denver, the separation of the
largest community, the Great Plains, from those it borders is
excellent. Boundaries between the predicted occurrences of
communities also conformed well to the digitized map in re-
gions where altitudinal segregation of communities was pro-
nounced, from sea level to alpine tundra in the Seattle and
San Francisco panels or from desert to subalpine in the
Tucson panel. Differences between the observed and the pre-
dicted became most noticeable for communities that occur in
patches or as stringers along altitudinal bands, as illustrated
for the high elevations in the Denver panel and in the arid
mountains of the Death Valley panel. This latter panel, for
instance, consists of a patchwork of 12 communities, ar-
ranged largely along altitudinal transects from the Mojave
desertscrub, the California chaparral, or the Great Basin des-
ertscrub to the tundra of the White Mountains. As shown by
this panel in particular and the figure as a whole, classifica-
tion errors accumulate along community boundaries and are
therefore related to polygon geometry.
Further inspection of the classification errors revealed mis-

alignment between the digitized distribution of communities

and the digitized elevations, the latter of which were used for
climate estimates. Misalignment of these files is apparent
along the coastline in the Seattle and San Francisco panels of
figure 3 but is even more obvious when the communities are
superimposed on the digitized elevations. In figure 4 (left),
the altitudinal zonation of communities is acentric to Mount
Charleston, which rises out of the Mojave Desert near Las
Vegas, Nevada, and the lesser peaks to the south. In figure 4
(right), the digitized boundaries are misaligned with three
volcanoes in the Cascade Range east of Portland, Oregon;
the boundaries are acentric to Mount St. Helens (upper left)
and Mount Hood (bottom) and ignore Mount Adams (upper
right) entirely. To be sure, the digitized community map is be-
ing used in a manner that demands greater accuracy than
originally intended by its authors. Nonetheless, because com-
munity boundaries were used as the standard of excellence,
any lack of synchronization between files will lead to mis-
classification, with the greatest errors associated with small
patches of irregular shape. Error rates, therefore, should be
largest for those communities with the largest amount of pe-
rimeter per unit area.
To test this hypothesis, classification errors were regressed

on the ratio of the perimeter to the area of the community’s
average polygon. Because of the supplemental data that had
been appended to the data points for community 26, data for
this community were withheld from the regression. Not sur-
prisingly, community 26 appeared as an outlier in an other-
wise strong, linear relationship (fig. 5). The regression was
statistically significant (P < 0:05), with an R2 of 0.75. Be-
cause a circle is the polygon with the smallest ratio of perim-
eter to area and because the ratio increases as the radius of
the circle decreases, a reasonable approximation of an error
adjusted for polygon size and shape would be a value pre-
dicted by the regression in figure 5 for a circle with an area
equal to that of the community’s average polygon. By adjust-
ing for misalignment of geographic data sets in this way, er-
ror rates would be reduced for all communities (table 2), but
the reduction would be substantial for the tundra communi-
ties and the Madrean woodland, the communities that occur
in the smallest patches. Recalculating overall error rates from
the adjusted values and including the errors for community
26 would reduce the overall error to 9.4%, a reduction of
about one-half.
Other sources of classification error include the broad eco-

tones that undoubtedly connect these communities. For ex-
ample, all but six of the data points for the Madrean
montane conifer community, number 26 (table 2), were plot
locations that meshed precisely with the digitized elevations.
Errors from misalignment of digitized data sets, therefore,
would be small. Yet, classification errors were 33%. Of these,
65% involved the Madrean evergreen forest and woodland,
a community ordinarily adjacent to the montane conifers in
the altitudinal sequences of the desert Southwest. While eco-
tones are an obvious source of classification error, adjusting
for them would have required a subjectivity we were not
willing to pursue.
Although 12 variables were used to fit the model, only

seven were of primary importance: PRATIO, TDIFF, PRATIO 3

MTCM, GSP 3 DD5, TDIFF/GSP, MAP 3 TDIFF, and MMAX
(table 1). Of these, the first four were dominant.

Table 4

Statistical Output from Bioclimatic Models: Classification Errors
from the Confusion Matrix and the Three Most Important

Predictors According to the Mean Decrease
in Accuracy

Classification errorsa

Species
Commissionb

(%)
Overall
(%) Important variablesc

Pseudotsuga menziesii 7.7 4.7 GSP, MAP 3 DD5,

AMI 3 MTCM

Pinus ponderosa 7.0 4.3 MINDD0, AMI,

TDIFF/GSP
Picea engelmannii 8.8 5.3 AMI, TDIFF/GSP,

MAP 3 DD5

Juniperus osteosperma 6.3 3.8 FDAY, PRATIO,
GSP 3 TDIFF

Pinus edulis 6.7 4.1 FDAY, GSP 3 TDIFF,

PRATIO

Larix occidentalis 5.4 3.2 MMAX, PRATIO,
MINDD0

Quercus gambelii 3.5 2.1 GSP 3 DD5,

TDIFF/MAP,

PRATIO 3 MTCM
Carnegiea gigantea 0.3 0.1 DD5 3 MTCM,

GSP 3 MTCM,

PRATIO
Pinus leiophylla 6.5 3.8 GSP 3 DD5,

PRATIO, MAP

a Errors of omission (presence ¼ yes, but prediction ¼ no) are
<0.5%.

b Presence ¼ no, but prediction ¼ yes.
c Variable acronyms are keyed to table 1.
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Species-Specific Bioclimate Models

Of the species, the most abundant was Pseudotsuga men-
ziesii, which had slightly more than 20,000 observations, and
the least abundant was Pinus leiophylla, with only 82 obser-
vations (table 3). Because the sample drawn for each forest
was based on a 40% contribution of the observations for
which presence ¼ yes, each regression tree produced for the
former species, with presence ¼ yes weighted twice, was
based on ca. 100,000 observations, while those for the latter,
with presence ¼ yes weighted three times, was based on only
600. The table also shows that the climate envelope greatly
overestimates the realized climatic niche. For P. menziesii, in
fact, the 35-variable envelope contains ca. 96,000 of the ob-
servations, 82% of the total number of forested and nonfor-
ested lands within the Forest Inventory database.
Classification errors (table 4) from the fitting of the Ran-

dom Forests algorithm ranged from 0.1% (Carnegiea gigantea)
to 5.3% (Picea engelmannii). However, errors of omission,
the most serious of the errors, were less than 0.15% (Pinus
ponderosa), while errors of commission were less than 9%.

Using range maps for verification has limitations, largely be-

cause range maps include data errors that become apparent

with modern mapping technology (fig. 6). Range maps also

are two-dimensional representations of botanical limits of

distribution that will encompass unsuitable sites, particularly

with regard to altitude. Nonetheless, the range maps provide

strong verification of the models (figs. 7–15). In the figures,

the two darkest shades of green (>60% of the votes) tend to

be centered well within the boundaries of the range map,

while those with the lightest shades (20%–40%) are on the

periphery. Insets are used in most of these figures for illustrat-

ing voting majorities and tend to reproduce the range maps.

Each map is instructive.
Pseudotsuga menziesii. Correspondence between the pre-

dicted occurrence and the range map is nearly perfect (fig. 7),

even for isolated populations (lower right inset). The inset at

the upper right documents another instance (see fig. 6) of dis-

harmony between the range map and the actual distribution.
Picea engelmannii. Correspondence between the predicted

occurrence and the range map is strong (fig. 8), although

Fig. 6 Distribution of sites (dots) inhabited by Larix occidentalis in relation to the digitized range map (black outline; Little 1971).
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areas of disharmony are apparent, particularly in eastern Or-
egon, where the climate profile is predicted to occur outside
of the boundaries of the range map. The model accurately
predicted the occurrence of isolated populations such as
those in the Chiricahua Mountains of southeast Arizona, the
southernmost population of the species (inset at bottom cen-
ter), and in the Sweetgrass Hills of Montana (upper right in-
set), where existing populations were not included on the
range map. Still, the map produced from the majority of
votes corresponds closely with the range map.
Pinus ponderosa. Concurrence between model predic-

tions, the range map (fig. 9), and data points (lower insets)
can be nearly perfect. Nonetheless, areas of disharmony ex-
ist, the most notable of which are in (a) the Willamette Valley
of western Oregon (upper left inset), where P. ponderosa is
present but where the model allocates few supporting votes,
and (b) western Montana (upper right inset), where both the

range map and the predictions are poorly aligned with the
species’ sporadic distribution.
Larix occidentalis. Despite errors of prediction that are

smaller than those for the three conifers considered above
(table 4), predictions are less consistent with the range map
(fig. 10). Errors in the range map notwithstanding (fig. 6),
the model predicts that the species should be abundant in
much of the northern Cascade Range of south-central British
Columbia, where the contemporary distribution is limited to
two small populations. For this species and for several con-
sidered below, climates approaching that of the profile are
predicted at locations far removed from the contemporary
distribution (lower right inset).
Quercus gambelii. The modeled climate profile is gener-

ally consistent with the range map (fig. 11), although the pro-
file is predicted to occur where the species is absent, most
noticeably (a) on the periphery of the range in northwest

Fig. 7 Modeled bioclimate profile of Pseudotsuga menziesii overlaid with the digitized range map of Little (1971). Shades of green code the

proportions of votes received by a pixel in favor of being within the climate profile: 0%–20%, no color; 20%–40%, lightest green; 40%–60%,
light green; 60%–80% dark green; and 80%–100%, darkest green. Occurrence of the profile based on the majority of votes is in the lower left.

Dots in the panel on upper right indicate sites known to be inhabited.
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Arizona and (b) far to the north in the Salmon River drain-
age of central Idaho and the Bitterroot Mountains of western
Montana (upper right inset).
Pinus edulis. Correspondence between predictions and

the range map (fig. 12) is outstanding in its minutiae, whether
in the center of distribution (upper left inset) or on the pe-
riphery (lower left inset). The profiles of this species, the pre-
vious one (Q. gambelii), and the next one ( J. osteosperma),
all species endemic to the Great Basin, are all predicted to
exist far to the northwest in the Okanagan Valley of British
Columbia.
Juniperus osteosperma. Insets (fig. 13) illustrate areas where

J. osteosperma was likely confused with Juniperus scopulorum
(upper right) and Juniperus monosperma (lower right). By
predicting the presence of the J. osteosperma profile within
these insets, the model demonstrates a sensitivity to such er-
rors and thereby illustrates the power of Random Forests to
classify data. Nonetheless, the predictions capture the essence
of this juniper’s distribution, particularly in the areas where
it is abundant.

Carnegiea gigantea. Concurrence between the range map,
data points, and predictions is precise (fig. 14). The species’
altitudinal limit in the mountains surrounding Tucson (lower
right insert) is ca. 1050 m, where the climate evidentially be-
comes too cold (see Steenbergh and Lowe 1977). The model
correctly describes (a) the general absence of the cactus in the
lower Gila River drainage (lower left inset) and (b) the tran-
sition between the Sonoran and Mojave Deserts (upper cen-
ter inset).
Pinus leiophylla. Predictions, the range map, and data

points are in harmony (fig. 15), although the map of the ma-
jority of votes identifies locations proximal to the contempo-
rary distribution that should be within the climate profile.
The model also suggests that the climate may also approach
that of the profile in valleys of the Clearwater and Salmon
Rivers of Idaho far to the north.
The climate variables most important for predicting the oc-

currence of these nine species center around annual and sum-
mer precipitation, the periodicity of the precipitation, and
the interactions of precipitation with temperature (table 4).

Fig. 8 Modeled bioclimate profile of Picea engelmannii (see fig. 7).
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Of the 27 variables listed as important (table 4), 21 involve
precipitation directly or interactively, 13 incorporate mean
annual precipitation, 16 incorporate summer precipitation,
and only five involve the direct effects of either summer or
winter temperature. PRATIO, the variable reflecting the peri-
odicity of precipitation, appears in the models of six of the
nine species.

Predicting Response to Global Warming

To illustrate the utility of the models for assessing response
to a change in climate, we use the average global warming
predictions from two GCMs that, for the current century,
suggest that temperatures should rise by ca. 5�C and precipi-
tation should increase by ca. 27% (126 mm) in our geo-
graphic window, but the ranges vary from 3.4�C to 6.5�C for
temperature and from �11% (�38 mm) to 224% (1174
mm) for precipitation.
Community profiles. In using the plurality of votes to

predict the future distribution of contemporary profiles, all
pixels are assigned to one of the 25 communities. Votes cast

by the Random Forests algorithm, summarized for groups of
similar communities (table 5), indicate that the area of the
coastal forest profiles would change little but that most com-
munities would increase in area, largely at the expense of the
subalpine-tundra profiles but also at the expense of the Great
Basin woodlands. The profile of one community, the Sitka
coastal conifer forest, a minor component of the flora of the
Northwest, would disappear early in the century. The spatial
shifting of community profiles would be extensive, however,
involving ca. 45% of our geographic window. By the end of
the century, therefore, only 55% of the pixels in the window
would exhibit the same community profile they do today.
Projected changes in area of community profiles follow dis-

parate patterns across the century (table 5). While the area
allocated to the Great Plains profile would remain relatively
constant, that for the profiles of some communities (e.g.,
grasslands, Madrean) would decline in area early and in-
crease later, and that for profiles of others (e.g., desertscrub)
would increase early but decrease later, while those of still
others would increase steadily in area (e.g., evergreen forests

Fig. 9 Modeled bioclimate profile of Pinus ponderosa (see fig. 7).
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and chaparral), decrease steadily (e.g., subalpine tundra,
Great Basin woodlands), or maintain early gains (montane
and coastal forests). Because temperatures are increasing
throughout the century, the disparate trends for these com-
munities would result from a difference in response to changes
in precipitation and, therefore, to the balance between tem-
perature and precipitation.
However, these projections appear much different when

one considers the extramural climates, the climates predicted
to be outside the 35-variable climate envelopes that surround
the contemporary climate profiles of these communities. Extra-
mural climates account for 0.4% of the pixels in the contem-
porary climate but should increase to 12.3% in the decade
beginning in 2030, 25.6% in that of 2060, and 47.2% by the
end of the century (fig. 16). To be sure, the misalignment of
geographic data sets would account for extramural predic-
tions for the contemporary climate, but the exponential in-
crease in the extramural climates projected for future decades
means simply that by the end of the century, 47% of the
West would exhibit profiles with no contemporary analogs

among the communities of today. For these extramural cli-
mates, predictions from correlative models of even superb
statistical fit would be tenuous.
Extramural climates should be concentrated in the western

Great Plains, the Southwest, and the Pacific Coast and should
occur sporadically elsewhere (fig. 16). The extramural cli-
mates, therefore, would be disproportionately dispersed
through the future distribution of the community profiles (ta-
ble 5), accounting for less than 15% of the profiles of the
montane forests and Great Basin woodlands but more than
88% of the evergreen forests and chaparral profiles. Particu-
larly illustrative are the projections for the community recog-
nized today as the coastal conifer forest (fig. 17). When
judged according to the plurality of votes, the profile of this
community should continue to occupy ca. 3.6% of the west-
ern landscape throughout the century, although 40% of the
future area should be in locations other than where the pro-
file occurs today (table 5), including sites far inland in the
mountains of Idaho. But, by the end of the century, 61% of
the future distribution predicted for this profile would be

Fig. 10 Modeled bioclimate profile of Larix occidentalis (see fig. 7).
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outside the contemporary climatic envelope (table 5), includ-
ing some of the novel climates that had arisen earlier. Our
statistics suggest, in fact, that only 29% of the contemporary
distribution of this profile should remain in place and remain
within the contemporary envelope.
When the extramural climates are taken into consider-

ation, the proportion of the contemporary distribution of
community profiles that would not be subject to disruption,
that is, would remain in place and within the contemporary
envelope, would become relatively small for all but the
coastal forests (29%), the Great Plains (33%), and the mon-
tane forests (45%) (table 5; fig. 18). By the end of the cen-
tury, the climate of only 22.2% of our geographic window
could be expected to support the same communities it does
today. The statistics (table 5) also indicate that by the end of
the century, at least five of the biotic communities (2, 4, 11,
23, and 26; table 2) might cease to be recognizable, while an
additional four may become precarious (12, 17, 18, and 25).
Species-specific profiles. Global warming, according to

the IS92a scenario, is projected to have pronounced, wide-

spread, highly disruptive, and disparate effects on the climate
profiles of these nine species (table 6; figs. 19, 20). Statistics
describing the fate (table 6) of C. gigantea and P. leiophylla
profiles are presented but pertain only to the northern por-
tions of their distributions, are misleading, and are not con-
sidered further.
According to our projections, only the area occupied by

the profile of Q. gambellii is expected to increase by the close
of the century, that of P. menzieisii should hold constant,
but those of L. occidentalis, P. edulis, P. engelmannii, and
J. osteosperma would be reduced drastically (table 6). Spatial
shifts of the profiles would be extensive for all species, with
the profile of P. menziesii being the least affected. Even so,
only 54% of the contemporary distribution of the P. menziesii
profile should remain in place throughout the century. Al-
though the occurrence of extramural climates should not be a
large factor, when considered in light of the proportion of pro-
files that would vanish from their contemporary locations, the
combination would portend widespread disruption to the con-
temporary distribution of the climate profiles of these species

Fig. 11 Modeled bioclimate profile of Quercus gambelii (see fig. 7).
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(table 6). Shifts in spatial distribution of the profiles should be
accompanied by increases in their altitudinal distributions of
ca. 500 m in P. menziesii, P. ponderosa, and P. edulis, ca.
400 m in L. occidentalis, and ca. 300 m in P. engelmannii and
Q. gambellii, but only ca. 100 m in J. osteosperma.
A comparison of tables 5 and 6 shows that projected

effects on the profiles of the species are not necessarily con-
sistent with those of their communities. On the one hand,
projections for the profiles of P. menziesii of the coastal for-
ests and P. engelmannii of the subalpine tundra (table 6)
closely parallel those predicted for their respective communi-
ties (table 5). But on the other hand, P. ponderosa is a promi-
nent indicator of the montane forests, while L. occidentalis is
a lesser component of the same forests in the north, as is
Q. gambelii in the south. Yet the profiles of these species are
projected to respond to global warming much differently
from each other (table 6) as well as from the community as a
whole (table 5).
Projections for the profiles of J. osteosperma and P. edulis,

both indicator species of the Great Basin conifer woodlands,

are particularly illustrative of the effects that disparate indi-
vidualistic responses may have on communities of the future.
The profiles of both species are expected to vanish across
much of their contemporary distribution (table 6), in associa-
tion with the demise of the woodlands (table 5). While the
profiles of both species should become reduced in area, that
of the pine is projected to collapse into Colorado and shift
upward in altitude, while that of the juniper should shift lat-
erally into Nevada (fig. 20). As a result, the co-occurrence of
these two species should change from 35% (i.e., 35% of the
sites where either species occurs should have both) to only
6% by the end of the century. Even though the profile of the
Great Basin woodlands would persist throughout the century,
these results suggest that the composition of these woodlands
would change considerably.
Our projections also show that the climate profile for the

northern portion of the distribution of C. gigantea now
growing in southern Arizona would shift northward by ca.
500 km (fig. 20) and rise ca. 600 m in altitude. Likewise, fig-
ure 21 shows that the profile describing the northern tip of

Fig. 12 Modeled bioclimate profile of Pinus edulis (see fig. 7).
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the broad geographic distribution of P. leiophylla should shift
northward early in the century by as much as 400 km and
upward by ca. 100 m; by 2060, it should shift northward by
as much as 600 km and upward by 400 m; and by 2090, it
should shift northward by 800 km and upward by ca. 600 m.
A reasonable expectation for both of these species would be
that by the end of the century, a portion of the extramural
climates of the Southwest (fig. 16) should exhibit climate
profiles typical of these species in the Mexican portions of
their contemporary distributions.

Discussion

Plant-Climate Relationships

Communities. Climatic control of community composi-
tion and distribution is at the foundation of plant sociology.
While a demonstration that the biotic communities of Brown
et al. (1998) recur across the landscape in response to climate

might be anticipated, the degree to which the occurrence of
the communities can be predicted from climate at a resolu-
tion as fine as 1 km seems remarkable indeed. The strength
of the relationships of figures 2 and 3 was a pleasant surprise
to Brown himself (D. E. Brown, Botany Department, Arizona
State University, Tempe, personal communication).
The variables most important for separating the communi-

ties tend to parallel general differences in climate across our
geographic window. Of greatest importance was the ratio of
summer to annual precipitation, a variable reflecting general
differences among maritime coastal climates, continental
climates of the interior, and monsoonal climates of the South-
west. Another important predictor, the summer-winter tem-
perature differential, separates maritime and continental
climates, and together these two variables, along with their
interactions with temperature and annual precipitation, ac-
counted for five of the seven most important variables. The
remaining variables, summer maximum temperatures and the
interaction of growing season precipitation with degree-days

Fig. 13 Modeled bioclimate profile of Juniperus osteosperma (see fig. 7). Dots in the inserts show general location of Forest Inventory sites

purported to be inhabited by J. osteosperma but more likely inhabited by Juniperus scopulorum (upper right) or Juniperus monosperma
(lower right).
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warmer than 5�C, undoubtedly contribute to the altitudinal
gradients that are strongly related to vegetation (Daubenmire
and Daubenmire 1968).
The climatic basis of the distinctive vegetation zones in the

West has been the subject of conjecture for decades. Climate
variables purported to control the distribution of plant com-
munities, for instance, have included low temperatures for
the upper altitudinal margins and moisture stress at the lower
(Larson 1930), the length of the frost-free season (Baker 1944),
the balance between temperature and precipitation (Haig
et al. 1941), and summer droughts (Daubenmire 1956). Our
list of important variables emphasizes the complex nature of
the interactions through which these intuitive effects might
be expressed.
Species. The Random Forests regression tree produced bio-

climatic models of excellent fit. The errors of omission that
accrue when a model falsely predicts absence approached
zero, and errors of commission were less than 10%. While
many ecologically plausible reasons exist for the errors of com-
mission, experimental errors are the most plausible explana-

tion for errors of omission. For judging fit, therefore, errors
of omission are the most serious, and for these errors to ap-
proach zero in our analyses demonstrates the power of the
regression tree to properly classify data.
The models received strong verification when predicted

distributions were compared to range maps (figs. 8–18), de-
spite the drawbacks (fig. 6) of using range maps as a stan-
dard of excellence. Still, for several of the species but most
notably Larix occidentalis (fig. 10) and Quercus gambelii
(fig. 11), the comparisons pinpointed lands where the climate
should be suitable but where the species was either absent or
present at frequencies so low as to escape representation in
field plots. From the statistical perspective, disharmony of
this type produces errors of commission. Yet disharmony be-
tween range maps and predictions from well-fitted models is
as likely to result from disequilibrium between the climate
and plant distributions as from experimental errors. As dis-
cussed by Ackerly (2003), equilibrium is only temporary at
best, largely because climate change is an ongoing process to
which plant responses will always lag (Davis 1989; Huntley

Fig. 14 Modeled bioclimate profile of Carnegiea gigantea (see fig. 7).
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1991). In judging whether errors of commission in our models
originate from experimental errors or from plant-climate dis-
equilibrium, it is instructive to note that provenances of
L. occidentalis perform admirably when established beyond
the limits of the species’ distribution in the northern Cascade
Range of British Columbia (B. J. Jaquish, British Columbia
Ministry of Forests, Vernon, personal communication), pre-
cisely as the bioclimatic model predicts (fig. 10). A portion
of the errors of commission (table 4), therefore, quite likely
reflect unoccupied niche space resulting from a lag in the
response of the vegetation to the warming trends of the twen-
tieth century.
Even though correlative models are not suited to mechanis-

tic interpretations, the relative importance of predictor varia-
bles nonetheless may reflect underlying physiological
processes (Pearson and Dawson 2003). In our analyses, the
climate variables of most importance for predicting occur-
rence of a disparate group of species were similarly disparate
(table 4). Yet some commonalities exist: interactions of tem-
perature and either annual or summer precipitation were

among the most important variables for all species except
L. occidentalis; the ratio of summer precipitation to total
precipitation was implicated for all but Pseudotsuga menziesii,
Pinus ponderosa, and Picea engelmannii; and the direct influ-
ence of the amount of winter cold was important for only
P. ponderosa and L. occidentalis. On the whole, our list of
important variables provides support to Cumming and Bur-
ton (1996), who used mechanistic models to conclude that
forest types and their constituent species likely will respond
to climate for different reasons.
Our list of important variables (table 4) does not necessar-

ily corroborate intuitive expectations. On the one hand, win-
ter cold and drought are thought to limit distributions of
Carnegiea gigantea (Steenbergh and Lowe 1977), and our list
tends to be supportive. Likewise, silvics manuals (e.g., Burns
and Honkala 1990) suggest that the occurrence of P. ponderosa
and L. occidentalis is limited largely by moisture stress and
winter cold; again, table 4 is supportive. But on the other
hand, the silvics manuals also state that P. engelmannii is lim-
ited to climates with cool summers and cold winters, but our

Fig. 15 Modeled bioclimate profile of Pinus leiophylla (see fig. 7).
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listing includes three variables reflecting interactions of temper-
ature and precipitation. Likewise, that Pinus edulis demands
arid climates, cold winters, and adequate summer precipitation
is not obvious in the variables chosen by our models.

Effects of Global Warming

Our projections rely not only on the accuracy of the biocli-
matic models but also on the ability of the IS92a scenario to
depict the accumulation of greenhouse gases and on the pre-
cision of the Hadley and Canadian GCMs to represent the
cumulative effects of these gases on climate. To the extent
that the scenario and the GCMs are correct, our models pre-
dict widespread disruption of natural ecosystems.
Predicted effects. Votes cast by the Random Forests algo-

rithm portray a straightforward and intuitively appealing
view of the effects of global warming on the future distri-
bution of community profiles: those of the grasslands, chap-
arrals, and montane forests would increase largely at the
expense of those of subalpine forests, tundra, and Great
Basin woodlands (table 5). The approach toward a new equi-
librium would require much of the vegetation to be in flux as
climate profiles shift. By the end of the century, ca. 55% of
the landscape would exhibit climates that are incompatible
with the vegetation occurring there today. Projected effects
on the distribution of the species-specific profiles, however,
tend to support the individualism long recognized in paleo-
ecological reconstructions (e.g., Overpeck et al. 1985; Huntley
1990; Jackson and Overpeck 2000; Ackerly 2003). In some
cases (e.g., P. menziesii and P. engelmannii), species-specific
predictions are consistent with those of their communities,
but in other cases, (e.g., Juniperus osteosperma and P. edulis),
predictions are inconsistent. While these responses generally
are compatible with intuitive expectations and published
works (Neilson 1995; Bachelet et al. 2001; Hansen et al.
2001), they nonetheless greatly oversimplify potential effects.
Nearly one-half (47%) of the western landscape is pro-

jected to be governed by climate regimes that are extramural,
having no contemporary analogs among the communities of

today. Because contemporary limits of distribution are a pro-
duct of competition as well as climatic tolerances, these ex-
tramural climates are particularly disconcerting. The validity
of projections from correlative models depends in part on
competitive relationships and therefore on climate profiles re-
maining constant. Yet the paleoecologic record demonstrates
that competitive relationships do change; individualistic re-
sponses of species to past climates have produced assem-
blages of species with no modern analogs (Overpeck et al.
1985; Huntley 1990; Jackson and Overpeck 2000; Ackerly
2003). Consequently, predictions made by our correlative
models for extramural climates are not defensible. With 55%
of the future landscape governed by a climate profile unlike
that which occurs there today and 47% of the future climate
classified as extramural, one can estimate from the statistics
in table 5 that only 22% of the future landscape would have
been free of disruption, that is, expected to support the same
vegetation that it has today. The conclusion, therefore, would
be that the vegetation on much of the landscape would be in
flux, but the future distribution of species and their associa-
tions could be predicted with confidence for only that por-
tion not governed by extramural climates.
One can reasonably assume that a portion of the extramural

climates (fig. 16) would have contemporary analogs outside
our geographic window. Extramural climates predicted for
the desert Southwest (figs. 16, 18), for instance, undoubtedly
have contemporary analogs in the Sonoran and Chihuahuan
desert and Madrean flora of Mexico (fig. 21). Likewise, ex-
tramural climates located on the western Great Plains proba-
bly have contemporary analogs in the grasslands toward the
southeast. Yet whether contemporary analogs exist outside
our geographic window for the extramural climates predicted
for the Pacific Coast or the mountains of the interior is ques-
tionable. We are led, therefore, toward the conclusion that
predicting the composition and distribution of future plant
assemblages from contemporary climate profiles in a large
and heterogeneous physiographic region may be impossibly
complex (see also Neilson et al. 2005). As recognized

Table 5

Predicted Area Occupied by the Climate Profiles of Groups of Biotic Communities for the Present Climate in Relation
to the Entire Western Landscape, the Change in Area Expected from Global Warming for Three Future Decades
Relative to the Contemporary Distribution, the Extramural Percentage, and the Percentage of the Contemporary

Area Expected to Have the Same Climate Profile throughout the Century

Darea (%)

Grouping

Group

compositiona
Total area in

2000 (%) 2030 2060 2090b
Extramural

by 2100 (%)

Remaining in place

through 2100c (%)

Great Plains 5 24.4 2.2 �3.6 6.6 (1.6) 61 89 (33)
Grasslandsd 10, 18, 20 18.4 �13.0 �0.8 17.9 (3.3) 53 33 (13)

Desertscrub 14, 19, 22, 24 17.3 31.2 22.9 3.0 (0.5) 53 25 (4)

Montane forests 6, 7 15.2 15.4 14.9 11.7 (1.8) 12 51 (45)

Great Basin woodlands 13, 15 8.2 �26.0 �9.6 �28.7 (�2.2) 3 17 (17)
Subalpine tundra 3, 4, 9, 11 7.7 �32.0 �71.8 �84.7 (�6.5) 19 10 (9)

Evergreen forest-chaparral 12, 16, 17, 21, 23 4.1 23.8 42.1 53.2 (2.3) 88 45 (5)

Coastal forests 2,8 3.6 4.1 4.8 0.1 (0.0) 62 60 (29)
Madrean 25, 26 0.3 �76.1 �20.3 10.2 (0.1) 86 0 (0)

a Codes are defined in table 2.
b Value in parentheses is percentage relative to total landscape.
c Value in parentheses is percentage remaining in place and within the climatic profile.
d Other than Great Plains.

1141REHFELDT ET AL.—PLANT-CLIMATE RELATIONSHIPS



repeatedly in the paleoecologic record (Overpeck et al. 1985;
Huntley 1990; Ackerly 2003), plant associations change,
and, from our analyses, there is no reason to expect other-
wise from the effects of global warming. Individualistic re-
sponses from species occurring as components of the same
biotic community (table 6) provide additional compelling evi-
dence that the associations themselves will change.
Yet for 47% of the West, predicted responses of the com-

munities and their constituent species occur within contem-
porary climate profiles, and for this proportion our models
should be applicable. The communities expected to be largely

unaffected by extramural climates are the montane conifer
forests, the two Great Basin woodlands, the subalpine conifer
forests, and the tundra (table 5). These communities are gen-
erally found in the mountain systems, account for ca. 35%
of the landscape today, and should account for ca. 28% by
the end of the century. For this portion, contemporary associ-
ations should persist as recognizable entities on future land-
scapes.
Synthesis. Our results join with many others (Melillo

et al. 1995; Bachelet et al. 2001; Hansen et al. 2001; Shafer
et al. 2001; Thompson et al. 2002; Neilson et al. 2005) to

Fig. 16 Shading marks pixels predicted to be extramural to the contemporary climate profiles of 25 biotic communities of the western United

States for the contemporary climate (upper left) and the climates of the decades beginning in 2030 (upper right), 2060 (lower left), and 2090

(lower right).
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predict a widespread disruption of native ecosystems from
global warming. Even though the vegetation may retain gen-
eral characteristics of deserts, grasslands, or forests, the fu-
ture distribution of climates in all but the forested mountain
systems is likely to support plant associations that differ
from those of today. In fact, our estimate that only 22% of
the future landscape should be governed by the same climate
profile that it has today is itself a misleading statistic. It is
well documented for most species, but particularly for woody
plants, that adaptation to a heterogeneous environment is ex-
pressed in clines of genetic variability that have been molded

by climate. Consequently, a change in climate should precipi-
tate intraspecifically a wholesale redistribution of genetic var-
iability across the landscape to realign genotypes with their
climatic optima (Rehfeldt et al. 1999, 2002, 2004). Realign-
ment will undoubtedly invoke evolutionary processes, partic-
ularly recombination, migration, and selection. There seems
little doubt, therefore, that essentially all lands in the natural
landscape will be affected by global warming as now por-
trayed.
Although consistent in direction, our results differ in detail

from those of most preceding analyses. Because our analyses

Fig. 17 Modeled community profiles using the plurality of votes for the Oregon coastal conifer forest for the contemporary climate (upper left)

and for the decades beginning in 2030 (upper right), 2060 (lower left), and 2090 (lower right). Predictions shaded in light gray lie within the

extramural climates of fig. 16.
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are of a scope and thoroughness not yet considered and reach
a statistical precision not attained by the general surveys con-
ducted in the past, in-depth comparisons are not necessarily
appropriate. At the level of the biome, for instance, our re-

sults (table 5) are in general agreement with those of Neilson
(1995) and Bachelet et al. (2001): climate profiles of subal-
pine, alpine, and tundra vegetation should nearly disappear
by the end of the century, while those of the montane forests

Fig. 18 Modeled community profiles using the plurality of votes for four groups of communities (see table 5) for the contemporary climate and

for the decades starting in 2030, 2060, and 2090 (left to right). Predictions shaded in light gray lie within the extramural climates of fig. 16.
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would change little in area. Yet, our analyses suggest that for-
est profiles should decrease by ca. 5% rather than the 11%
estimated by Hansen et al. (2001); profiles of scrublands and
arid woodlands should decrease rather than increase; and
those of grasslands, evergreen forests, and chaparral should
expand rather than contract. As for individual species, our
results concur with those of Shafer et al. (2001) and Thomp-
son et al. (2002) in predicting a decline in the P. engelmannii
profile but also conflict by predicting a decline in the climate
profile of P. ponderosa, rather than an increase, and no change
in the area of the P. menziesii profile, rather than a decrease.
Stasis. Correlative models predict the future distribution

of contemporary climate profiles, but interpretations invari-
ably avoid vegetation responses. Our models, for instance,
predict that the climate profile of P. edulis should shrink in
area by 48% by the decade beginning in 2030 (table 6),
while those for the Great Basin woodlands in which the spe-
cies occurs should be reduced by ca. 26% (table 5). Recent
reports indeed document the demise of these woodlands,
with mortality approaching 100% in some localities (Shaw
et al. 2005). This correspondence between the actual and
predicted demise indeed is suggestive of an initial response to
global warming. Yet a prediction of importance equal to that
concerning which climate profiles would be suitable for these
lands in the future would be one concerning the rate at which
the vegetation will respond. Although the rapid change pre-
dicted for global warming should accentuate the lag in re-
sponse expected from change (Rehfeldt et al. 1999, 2002;
Etterson and Shaw 2001; Jump and Peñuelas 2005), expecta-
tions regarding rates of recovery have yet to be addressed.
The subject of recovery is indeed complex. Needed are es-

timates for (1) rates of demise of the contemporary vegeta-
tion (see Rehfeldt et al. 2001), (2) species-specific climate
profiles for the future landscape, as, for example, developed
herein, (3) rates of immigration for species appropriate for
the new profile (Clark et al. 1998; Higgins et al. 2003), and
(4) estimates of the microevolutionary responses that will
eventually convey adaptedness (Rehfeldt et al. 1999, 2002;
Etterson and Shaw 2001; Savolainen et al. 2004). Among the
issues lacking solutions are approaches to addressing compet-

itive relationships in novel climates and the effects of climate
change on the insect and disease populations that are likely
to participate in the demise of the contemporary vegetation.
Yet reasonable estimates of the rate of response of natural
vegetation, the rate that a new equilibrium is approached,
and therefore the duration of the lag in response of the vege-
tation to the change are possible, even for a target seemingly
destined for continuous motion.
In considering rates of adjustment to environmental change,

one must also acknowledge the importance of human activi-
ties, whether proactive or inadvertent, in channeling vegeta-
tion responses. Fire suppression, for instance, has resulted in
large-scale conversion of grasslands of the Southwest into
shrub communities (D. E. Brown, personal communication),
and consequently, a projected increase in the grasslands, for
instance, undoubtedly would be compromised. Estimated
rates of recovery, therefore, must also take into account the
role of invasive species in either temporarily or permanently
filling abandoned niche space created by the demise of the
contemporary vegetation (Petit et al. 2004).

Mitigating the Effects of a Change in Climate

As the climate warms, plants eventually become less well
attuned physiologically to their environment (Rehfeldt et al.
1999, 2001, 2002). As fitness deteriorates, evolutionary pro-
cesses are activated so that adaptedness is maintained (see
Davis et al. 2005). Maintaining adaptedness in natural popu-
lations requires, first, that species successfully track their cli-
matic niche and, second, that genetic variability become
reassorted so that genotypes reappear in the climates to
which they are physiologically attuned (Rehfeldt et al. 1999).
While the evolutionary process is demonstrably efficient at
responding to a change in climate, the rate of climate change
predicted for global warming poses a greater threat to natu-
ral populations than the amount of change (Huntley 1991;
Rehfeldt et al. 1999, 2002; Etterson and Shaw 2001; Jump
and Peñuelas 2005). Some (e.g., Noss 2001) advocate letting
nature take its course, thereby relying on evolutionary pro-
cesses to realign species, genotypes, and climate. Others,
however, argue that rapid rates of change would create a lag

Table 6

Projected Effects of Global Warming on the Change in Area Expected in the Climate Profiles of Nine Species
at Three Future Decades Relative to the Contemporary Distribution, Percentage of the Future

Distribution Expected to Be Extramural, and the Percentage of the Contemporary Area
Expected to Have the Same Climate Profile throughout the Century

Darea (%)

Species 2030 2060 2090

Extramural

by 2100 (%)

Remaining in place

through 2100a (%)

Pseudotsuga menziesii 11 7 �2 14 54 (38)
Pinus ponderosa 11 11 �13 18 36 (27)

Picea engelmannii �33 �47 �72 5 23 (21)

Juniperus osteosperma �42 �34 �68 6 11 (11)

Pinus edulis �48 �54 �81 1 5 (5)
Larix occidentalis �32 �41 �63 3 14 (14)

Quercus gambelii 45 81 23 6 25 (20)

Carnegiea giganteab �53 �53 �83 0 0 (0)
Pinus leiophyllab �74 �25 �32 0 0 (0)

a Value in parentheses is percentage remaining in place and not extramural.
b Projections do not take into account the portion of the contemporary climate profile in Mexico.
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in response so large that natural landscapes would be incapa-
ble of maintaining the production of goods and services that
humans expect (Davis 1989; Huntley 1991; Rice and Emery
2003; Tchebakova et al. 2005). Mitigating effects of global

warming, therefore, would require mankind to proactively
participate in evolutionary processes by planting the appro-
priate genotypes of the appropriate species at the novel loca-
tion of their climatic optima (Tchebakova et al. 2005).

Fig. 19 Modeled climate profiles (votes > 50%) of four forest tree species for the contemporary climate and for the decades beginning in 2030,

2060, and 2090 (left to right).
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Correlative models are well suited for designing programs
to assist natural processes. Silvicultural practices interwoven
into intensive forest management are devoted largely to regu-
lating competition. The control of competition negates the

most serious objections for using correlative vegetation mod-
els for prediction, even for the extramural climates (fig. 16).
Contemporary reforestation programs with goals of match-
ing species and genotypes to the appropriate array of climates

Fig. 20 Modeled climate profiles (votes > 50%) of four species for the contemporary climate and for the decades beginning in 2030, 2060, and
2090 (left to right).

1147REHFELDT ET AL.—PLANT-CLIMATE RELATIONSHIPS



expected several decades in the future require for guidance
models similar to those used to produce figures 19–21. Pre-
dictions from such models are suitable for pinpointing those
locations expected to be climatically suitable for a species at
a future date (see Booth 1990; Broadmeadow et al. 2005). A
final step would be a query to a model of genetic variation to
determine which genotypes would be appropriate (see Rehfeldt
et al. 2004; Tchebakova et al. 2005). When mapped at a fine
scale (fig. 21), predictions become a tool for land managers.

Conclusions

Bioclimatic models have been developed to predict the oc-
currence of plant communities and their constituent species.
The models are of a scope, power, and precision that are cur-
rently unparalleled. Their fit and validation were superb.
When applied to the subject of global warming, the models
provided intuitively reasonable predictions but brought to the
forefront as many questions as answers. Despite the avail-

ability of these powerful models, a thorough assessment of
the effects of global warming is still distant. Analyses are par-
ticularly needed at the level of the landscape rather than con-
tinents or regions. Still, the accuracy of predictions from
bioclimatic models ultimately is dependent on the aptness of
the scenarios and the precision of the GCMs. Our models
emphasize the importance of the periodicity of precipitation
and of interactions between temperature and precipitation in
controlling the distribution of communities and their species.
Accuracy in assessing the ecological effects of global warm-
ing, therefore, will require that GCM modelers be as diligent
with the effects of atmospheric pollution on precipitation as
with temperature.
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